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A new MHD package has been added to KULL
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Kull’s hydro uses subzonal stresses
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• The new MHD package is
based on the standard edge
finite-element discretization

• To match compatible hydro,
our fields are subzonal
• Electric fields on edges of

sub-tet mesh
• Method works on arbitrary

polyhedral meshes
• This gives us many unknowns

• Reducing the matrix with a
Schur complement always
improves runtimes
• Speedup improves as mesh

gets more distorted
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Magnetic diffusion heats material and dissipates field

Discretize E with edge finite elements:

E =
∑

e

Eewe

∇× ∆t
µ0

∇× En+1 + σ · En+1 = ∇× Bn

µ0
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0
.

100
.

200
.

300
.0 .

1,000

.

2,000

.

3,000

.

4,000

.

Eigenvalue Number

.

E
ig

en
va

lu
e 

Va
lu

e

• This equation for the current is (nearly) singular
• In pure void, σ = 0 and J = σE = 0, so E unconstrained
• Use CG with hypre’s Auxiliary-space Maxwell Solver as

preconditioner
• Solves two, easier, nodal problems and projects to edge problem
• In void, we add the constraint E = ∇ϕ to make it non-singular

• Using pure void is more robust than using a small σ
• A small conductivity is resolution dependent: σsmall ∼ 1/∆x
• But extra work for void is about 10% slower than using a floor
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KULL performs well on ideal MHD tests

...

Kull

.

Athena

...

Kull

.

Ares

• Wave structure and instability agree with others
• We work fully unstructured, arbitrary polyhedral meshes
• Mesh becomes highly distorted, with angles nearing 180◦
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Robustness and generality is paid for with unknowns
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6 vs. 2 edges/zone (RZ) Each hex has 24 tets
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29 vs. 3 edges/zone (3D)

• Relative to a standard quad or hex discretization (in blue)
• In 2D-XY, we have twice the unknowns
• In 2D-RZ, we have thrice the unknowns
• In 3D, we have 10 times the unknowns

.

......

Can we trade extra local work for some of the
expensive global HYPRE solve to improve runtime?
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During matrix assembly, we reduce global unknowns

Total 3D matrix A

• Full matrix is sum of tet matrices

A =
∑

t

At

• We form groups of tets into clumps

A =
∑

c

Ac with Ac =
∑

tc

Atc

• Edges are interior to the clump or on the boundary

Acxc = yc →
[
Aii Aib
Abi Abb

] [
xi
xb

]
=

[
yi
yb

]
• Isolated interior edges are eliminated with Schur complement(

Abb − AbiA
−1
ii Aib

)
xb = yb − AbiA

−1
ii yi → Arxb = yr
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Reduced unknowns are recovered locally after global
solve

• Now, we sum reduced, local clump matrices into global matrix

AR =
∑

c

Arc , yR =
∑

c

yrc

• Then we can solve global system with hypre

xB = A−1
R yR

• Reduced matrix is much smaller than full matrix
• AR is a discretization on the clump mesh

• For each clump, exactly solve for the interior unknowns

xi = A−1
ii yi − A−1

ii Aibxb

• We trade more cache-efficient, dense linear algebra (A−1
ii ) for

less global work computing A−1
R

.

......What triangles or tets do we choose to make the clumps?
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In 2D we eliminate the zone-interior unknowns
Clumps are defined by the triangles that make up an original mesh zone

..

Reduce XY unknowns to mesh nodes
..

Reduce RZ unknowns to mesh edges

Mesh Type rows/hex matrix entries/hex matrix entries/row
XY original 2 14 7
XY quad 1 9 9
RZ original 6 30 5
RZ quad 2 14 7

• Number of unknowns and matrix entries are lower.
• But matrix is less sparse

• We have recovered the same number of unknowns and
nonzeros as the standard quad discretizations
• But the discretization is not the same
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In 3D we must think outside the box

.

The tetrakis hexahedron is the
obvious clump of tets

.

The octahedron that spans each face is a
much better clump of tets

• Reduction increases matrix bandwidth
• Good performance tied more to matrix size than unknowns

matrix matrix
Mesh Type rows/hex entries/hex entries/row
“tet’d” hex (original) 29 461 16
tetrakis hexahedron 15 1107 74
octahedron 11 335 30
standard hex 3 99 33

A tetrakis hexahedron is a non-regular icositetrahedron (24-sided polyhedron) formed by adding square pyramids to the faces of a hexahedron. Eric W. Weisstein,
Mathworld, http://mathworld.wolfram.com/TetrakisHexahedron.html

http://mathworld.wolfram.com/TetrakisHexahedron.html
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The reduced matrix has nice mathematical properties
We have detailed proofs of these statements, which we’ll skip...

• Many of the properties of the original matrix carry over to the
reduced matrix
• The reduced matrix is sparse, unlike most Schur complements
• We have a large (near) null space, so we need AMS
• The AMS preconditioner works on the reduced matrix
• In 2D the reduced matrix has the same graph as a standard quad

discretization
• Some of the properties are much better for the reduced matrix

• The condition number is lower
• The ratio between the strongest and weakest off-diagonals in the

matrix is better, making it easier for AMS/AMG to make good
choices about eliminating entries

• In 2D the reduced matrix is even nicer than the standard quad
discretization

• It is as if we discretized directly on the reduced mesh
• But we get solutions for all of the original unknowns.

See Brunner and Kolev, “Alegraic multigrid for linear systems obtained by explicit element reduction,” submitted to
SIAM Journal on Scientific Computing, July 2010
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Test 1: Conductivity jump and varying aspect ratio

The mesh and conductivities B-field solution

• A magnetic field diffuses from a void region into material

• The mesh is stretched to create zones with high aspect ratios,
keeping resolution in the interesting direction fixed

• We compare run times and iteration counts for 2D-XY, 2D-RZ,
and 3D-XYZ geometries
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Test 1: Speedup improves as aspect ratio increases
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. ..XY full. ..XY reduced. ..RZ full. ..RZ reduced. ..XYZ full. ..XYZ reduced

• Solve times are always faster with the reduced matrix
• XY: 1.7-4.2× , XYZ: 2.0-3.5×, RZ: 2.9-35×!

• Improvement from smaller matrix and reduced iteration count
• Setup is faster, despite extra work
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Solve time improves on larger, realistic problems
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• Increase problem size with processors to 10M unknowns
• XY simulation is the top plane; RZ is the front plane
• Solve time improvement is independent of problem size.
• Reduction reduces solve time between 1.8-4.4×

See Gardiner and Brunner, “Interesting & Useful MHD Test Problems,” JOWOG-42, April 2010, SAND2010-2509-P
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Comparison of hex-only to sub-tet’d discretizations

...

B on tets

.

σv = 10−8

.
σm = 1

.

323 hex zones

• Run the same problem
multiple ways
• Kull: tet’d hex
• Kull: reduced matrix
• Ares: pure hex

• Both Kull methods solve
same system

• hypre used to solve both

matrix code hypre total
Mesh rows entries setup solve time iters
Tet (K) 969k 15.2M 18.5 107.0 125.5 13
Reduced (K) 367k 10.9M 12.9 33.5 46.4 9
Hex (A) 105k 3.3M 5.9 16.4 22.3 18
Ratio (K/A) 9.3 4.6 2.2 2.0 2.1 0.5

• Kull runtime 2× slower for 9.3× more unknowns
• Need to run convergence study, plotting error vs. runtime

• Condition number improves from hex to tet to reduced
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Conclusions

• We’ve developed a new subzonal MHD discretization that
works with Kull’s hydro
• Supports arbitrary polygonal and polyhedral meshes
• Works on with pure void more robustly than small conductivity
• But it has more unknowns than zonal discretization

• We combine unknowns using the Schur complement
• Reduced matrix is still sparse, and works with AMS
• In 2D, we recover the number of unknowns as a quad

discretization
• Reduced matrix has better properties, making it easier to solve
• Setup is faster, despite extra work, since we touch less memory

• Overall run time is improved between 2 and 30 times!
• Improvement increases as aspect ratio gets worse


